Муниципальное общеобразовательное бюджетное учреждение «Средняя общеобразовательная школа № 5 Лесозаводского городского округа»

РАССМОТРЕНО МО учителей естественнонаучного цикла Протокол № 1 от "29" августа 2024г. СОГЛАСОВАНО Зам. директора по УВР

_ Тарасова О.А.

УТВЕРЖДЕНО

и о директора МОБУ СОШ №5 ЛГО

С.И. Лукаш

Приказ № 349 от " 30" августа 2024г.

РАБОЧАЯ ПРОГРАММА

КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

«ФИЗИКА В ЗАДАЧАХ И ЭКСПЕРИМЕНТАХ»

10 класс

2024-2025 учебный год

Пояснительная записка

Рабочая программа курса внеурочной деятельности «Физика в задачах и экспериментах» для 10 класса составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО) и Примерной основной образовательной программой среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16- з). Рабочая программа занятий внеурочной деятельности по физике «Физика в задачах и экспериментах» предназначена для организации внеурочной деятельности обучающихся 10 классов.

Внеурочная деятельность — это образовательная деятельность, осуществляемая в формах, отличных от урочной системы обучения, и направленная на достижение планируемых результатов освоения образовательных программ среднего общего образования. Реализация рабочей программы занятий внеурочной деятельности по физике «Физика в задачах и экспериментах» способствует общеинтеллектуальному развитию личности обучающихся, формированию у них практических навыков решения разных типов физических задач, в том числе экспериментальных.

Центры образования естественно-научной направленности «Точка роста» созданы с целью развития у обучающихся естественно-научной, математической, информационной грамотности, формирования критического и креативного мышления, совершенствования

навыков естественно-научной направленности, а также для практической отработки учебного материала по учебным предметам.

При обучении физике деятельность, связанная с проведением физического эксперимента, оказывается комплексной. Она включает в себя ряд этапов: планирование, моделирование, выдвижение гипотез, наблюдение, подбор приборов и построение установок, измерение, представление и обобщение результатов. Для освоения указанных этапов применяется экспериментальный метод изучения физических явлений и процессов.

При подготовке учащихся 10–11 класса к сдаче ЕГЭ по физике следует сформировать у них умение решать экспериментальные задачи. В процессе их выполнения можно повторить значительный объём пройденного учебного материала.

Использование оборудования центра «Точка роста» для реализация образовательных программ естественнонаучной и технологической направленностей по физике предполагает реализацию следующих целей и задач:

• Реализация основных общеобразовательных программ по учебным предметам естественно-научной направленности, в том числе в рамках внеурочной деятельности

обучающихся.

- Разработка и реализация разноуровневых дополнительных общеобразовательных программ естественно-научной направленности.
 - Вовлечение учащихся в проектную деятельность.
- Использование оборудования при реализации основных общеобразовательных программ и дополнительных общеобразовательных программ, в том числе для расширения содержания учебных предметов.
- Использование оборудования для обеспечения эффективное достижение образовательных результатов обучающимися по программам естественно-научной

направленности, возможность углублённого изучения отдельных предметов, в том числе для формирования изобретательского, креативного, критического мышления, развития функциональной грамотности у обучающихся, в том числе естественно-научной и математической.

Данный учебный курс имеет своей целью развитие различных компетенций учащихся, формирования системного мышления, систематизацию и углубление знаний в предметной области «Физика», практической отработки учебного материала по учебному предмету. подготовку к сдаче ЕГЭ по физике.

Задачи обучения физике:

- освоение обучающимися общих законов и закономерностей природных явлений, создание условий для формирования интеллектуальных, творческих, гражданских, коммуникационных, информационных компетенций;
- овладение научными методами решения различных теоретических и практических задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать и анализировать полученные результаты, сопоставлять их с объективными реалиями жизни;
- формирование у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественнонаучные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать

полученные выводы;

• формирование у обучающихся научного мировоззрения, освоение общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоение практического применения научных знаний для решения задач повышенной сложности.

Программа определяет содержание и структуру учебного материала, последовательность его изучения и имеет практическую направленность. Обучающиеся закрепляют навыки решения физических задач, в том числе экспериментальных, и развивают исследовательские навыки в ходе самостоятельного познавательного процесса и

самостоятельной практической деятельности. Методологической основой Программы является системнодеятельностный подход.

Формы организации образовательного процесса:

- групповая;
- индивидуальная;
- фронтальная.

Форма внеурочной деятельности - кружок

Ведущие технологии:

Используются элементы следующих технологий: проектная, проблемного обучения, информационно-коммуникационная, критического мышления, проблемного диалога, игровая.

Основные методы работы на уроке:

Ведущими методами обучения являются: частично-поисковой, метод математического моделирования, аксиоматический метод.

Формы контроля:

Так как этот курс является дополнительным, то отметка в баллах не ставится.

Учащийся учится оценивать себя и других сам, что позволяет развивать умения самоанализа и способствует развитию самостоятельности, как свойству личности учащегося. Выявление промежуточных и конечных результатов учащихся происходит через практическую деятельность; зачетные работы:

- тематическая подборка задач различного уровня сложности с представлением разных методов решения в виде текстового документа, презентации, флэш-анимации, видеоролика или web страницы (сайта)
 - выставка проектов, презентаций;
- демонстрация эксперимента, качественной задачи с качественным (устным или в виде приложения, в том числе, презентацией) описанием процесса на занятии, фестивале экспериментов; физические олимпиады.

Планируемые результаты освоения учебного курса.

Личностные результаты.

Личностными результатами изучения предмета «Физика» являются следующие умения:

1. осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки. Постепенно выстраивать собственное целостное мировоззрение:

- вырабатывать свои собственные ответы на основные жизненные вопросы, которые
- ставит личный жизненный опыт;
- учиться признавать противоречивость и незавершённость своих взглядов на мир,
- возможность их изменения;
- учиться использовать свои взгляды на мир для объяснения различных ситуаций, решения возникающих проблем и извлечения жизненных уроков;
- 2. осознавать свои интересы, находить и изучать в учебниках по разным предметам материал, имеющий отношение к своим интересам; использовать свои интересы для выбора индивидуальной образовательной траектории, потенциальной будущей профессии и соответствующего профильного образования;
 - 3. приобретать опыт участия в делах, приносящих пользу людям;
 - 4. оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
- 5. учиться выбирать стиль поведения, привычки, обеспечивающие безопасный образ жизни и сохранение своего здоровья, а также близких людей и окружающих;
 - 6. оценивать экологический риск взаимоотношений человека и природы;
- 7. формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды

Метапредметные результаты

- 1. умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
 - 2. умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3. владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4. готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

- 5. умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
 - 6. умение определять назначение и функции различных социальных институтов;
- 7. умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
- 8. владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- 9. владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
 - ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
 - организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и

познавательные) задачи;

- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.
 - 3. Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т. д.);
 - координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Планируемые предметные результаты изучения

Выпускник научится:

- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы,

теории), демонстрируя на примерах их роль и место в процессе научного познания;

• проводить исследования зависимости между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами и делать вывод с учётом

погрешности измерений;

- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учётом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчётные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и

законы, необходимые и достаточные для её решения, проводить расчёты и проверять полученный результат;

- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач.

Выпускник получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
 - выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- решать практико-ориентированные качественные и расчётные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
 - объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Программа курса согласована с содержанием программы основного курса. Она ориентирует ученика на дальнейшее формирование представлений об алгоритме решения задач, совершенствование уже усвоенных учащимися знаний и умений, знакомит с приемами решения задач повышенной сложности, а также различными типами заданий ЕГЭ.

Содержание курса внеурочной деятельности «Физика в задачах и экспериментах»

Тема 1. Введение – 2 часа.

Что такое физическая задача. Классификация физических задач по требованию, содержанию, способу задания и решения. Методы и способы решения физических задач.

Структура тестов ЕГЭ. Основные требования к оформлению. Физический эксперимент, его роль и место в процессе познания окружающего мира. Фундаментальные опыты в физике. Планирование эксперимента. Описание результатов. Погрешности измерений. Приближенные вычисления.

Тема 2. Кинематика. – 7 часов.

Основные понятия и формулы кинематики прямолинейного движения. Методы и способы решения задач по кинематике. Графики зависимости кинематических величин от времени. Свободное падение тел. Движение тела, брошенного под углом к горизонту. Равномерное движение по окружности. Решение заданий ЕГЭ.

Тема 3. Динамика. – 4 часа.

Законы Ньютона. Законы взаимодействия. Движение тела под действием нескольких сил. Движение системы связанных тел. Решение заданий ЕГЭ.

Тема 4. Закон сохранения в механике. – 3 часа

Импульс. Импульс системы тел. Закон изменения и сохранения импульса. Механическая работа, мощность. Кинетическая и потенциальная энергии. Механическая энергия системы тел. Закон сохранения механической энергии. Задачи на совместное применение законов сохранения. Решение заданий ЕГЭ

Тема 5. Статика. – 3 часа

Равновесие твёрдого тела. Момент силы. Условия равновесия твердого тела. Решение заданий ЕГЭ.

Тема 5. МКТ. Термодинамика. -8 часов.

Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Температура – мера средней кинетической энергии

движения молекул. Уравнение Менделеева-Клапейрона. Закон Дальтона. Газовые законы. Влажность воздуха. Внутренняя энергия. Работа и теплопередача как способы изменения

внутренней энергии. Решение задач на расчет количества теплоты для различных процессов. Уравнение теплового баланса. Первый и второй закон термодинамики. Решение заданий ЕГЭ.

Тема 6. Электростатика. – 2 часа.

Электрическое поле и его характеристики. Движение заряженных частиц в электрическом поле. Конденсаторы. Соединения конденсаторов.

Тема 7. Постоянный электрический ток. – 5 часов.

Закон Ома для участка цепи. Виды соединения проводников. Решение задач на расчёт электрических цепей. Работа и мощность тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Решение задач на расчёт электрических цепей. Решение задач на расчёт электрических цепей. Решение задач на расчёт электрических цепей, содержащих конденсатор. Решение заданий ЕГЭ.

Тема 8. Электрический ток в различных средах – 1 час.

Решение задач на расчёт цепей, содержащих полупроводниковый диод. Решение заданий ЕГЭ.

Тематическое планирование 10 КЛАСС

ЭОР, ЦОР				
№ занятий	Наименование разделов, глав	Количе ство часов	501, цог	
1-3	Введение	3	http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/	
4-10	Кинематика	7	http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v- animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/	
11-14	Динамика	4	http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/	
15-17	Закон сохранения в механике	3	http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v- animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/	
18-19	Статика	2	http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-	

20-27	МКТ. Термодинамика	8	animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/ http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-animaciah
28-29	Электростатика	2	https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/ http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-animaciah https://www.sites.google.com/site/saitpofizike/home
30-34	Постоянный электрический ток	5	http://www.fizika.ru/ http://class-fizika.ru/ https://www.sites.google.com/site/moyacshkola/idu-na-urok/fizika-v-animaciah https://www.sites.google.com/site/saitpofizike/home http://www.fizika.ru/
	ИТОГО	34	

Календарно-тематическое планирование курса внеурочной деятельности «Физика в задачах и экспериментах»

No	Тема	Дата	
Π/Π		планируемая	фактическая
	Введение (3 ч)		
1	Вводное занятие. Цели и задачи курса. Техника безопасности.		
2	Физическая задача. Классификация физических задач. Методы и способы решения		
	физических задач. Структура тестов ЕГЭ. Основные требования к оформлению		

3	Физический эксперимент, его роль и место в процессе познания окружающего	
	мира. Фундаментальные опыты в физике. Планирование эксперимента. Описание	
	результатов. Погрешности измерений. Приближенные вычисления.	
	Кинематика(7 ч)	
4	Кинематика прямолинейного движения (прямолинейное равномерное движение,	
	движение с постоянным ускорением). Методы и способы решения задач по	
	кинематике.	
5	Графики зависимости кинематических величин от времени. Решение заданий ЕГЭ.	
6	Свободное падение тел. Решение заданий ЕГЭ.	
7	Экспериментальное определение ускорения свободного падения.	
8	Движение тела, брошенного под углом к горизонту.	
9	Экспериментальное изучение движения тела, брошенного под углом к горизонту.	
10	Равномерное движение по окружности. Решение заданий ЕГЭ.	
	Динамика(4 ч)	
11	Первый, второй и третий законы Ньютона.	
12	Законы взаимодействия в механике.	
13	Алгоритм решения задач на второй закон Ньютона для случая движение тела под	
	действием нескольких сил. Решение заданий ЕГЭ.	
14	Движение системы связанных тел	
	Закон сохранения в механике(3 ч)	
15	Импульс. Импульс системы тел. Закон изменения и сохранения импульса. Решение	
	заданий ЕГЭ.	
16	Механическая работа, мощность. Кинетическая и потенциальная энергии.	
	Механическая энергия системы тел. Закон сохранения полной механической	
	энергии. Решение заданий ЕГЭ.	
17	Решение задач на совместное применение законов сохранения.	
	Статика(2 ч)	
18	Равновесие твёрдого тела. Момент силы. Условия равновесия твердого тела.	
	Решение заданий ЕГЭ	

19	Экспериментальное изучение условий равновесия твёрдого тела.	
	МКТ. Термодинамика(8 ч)	
20	Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Температура — мера средней кинетической энергии движения молекул. Уравнение Менделеева—Клапейрона. Закон Дальтона.	
21	Газовые законы. Решение графических задач.	
22	Практическая работа «Исследование зависимости давления газа от объёма при постоянной температуре»	
23	Практическая работа «Исследование изохорного процесса» (закон Шарля).	
24	Влажность воздуха. Решение заданий ЕГЭ.	
25	Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии.	
26	Практическая работа «Определение удельной теплоты плавления льда». Решение задач на расчет количества теплоты для различных процессов. Уравнение теплового баланса.	
27	Первый и второй закон термодинамики. Решение заданий ЕГЭ.	
	Электростатика(2 ч)	
28	Электрическое поле и его характеристики. Движение заряженных частиц в электрическом поле.	
29	Конденсаторы. Соединения конденсаторов.	
	Постоянный электрический ток(5 ч)	
30	Закон Ома для участка цепи. Виды соединения проводников. Решение задач на расчёт электрических цепей.	
31	Работа и мощность тока. Закон Джоуля-Ленца. Закон Ома для полной цепи.	
32	Практическая работа «Изучение закона Джоуля — Ленца»	
33	Практическая работа «Изучение зависимости полезной мощности и КПД источника	
	от напряжения на нагрузке»	
34	Решение задач на расчёт электрических цепей, содержащих конденсатор.	

Учебно – методический комплект

1. Федеральный государственный образовательный стандарт среднего общего образования (ФГОС СОО) (утвержден приказом Минобрнауки России от 17.05.2012 N 413

(ред. от 29.06.2017) "Об утверждении федерального государственного образовательного стандарта среднего общего образования").

- 2. Лозовенко Сергей Владимирович Трушина Татьяна Алексеевна Реализация образовательных программ естественнонаучной и технологической направленностей по физике с использованием оборудования центра «Точка роста». Методическое пособие.
- 3. Лозовенко Сергей Владимирович Трушина Татьяна Алексеевна «Реализация образовательных программ по физике с использованием оборудования детского технопарка «Школьный кванториум» 10—11 класс (углубленный уровень)». Методическое пособие.
 - 4. ФИПИ. «Физика». Типовые экзаменационные варианты ЕГЭ (под редакцией М.Ю. Демидовой)
- 5. Методическая служба. Издательство «БИНОМ. Лаборатория знаний» [Электронный ресурс]. Режим доступа: http://metodist.lbz.ru/